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The Second Kind Chebyshev Wavelet Method for
Fractional Differential Equations with Variable
Coefficients

Baofeng Li'

Abstract:  In this article, the second kind Chebyshev wavelet method is pre-
sented for solving a class of multi-order fractional differential equations (FDEs)
with variable coefficients. We first construct the second kind Chebyshev wavelet,
prove its convergence and then derive the operational matrix of fractional integra-
tion of the second kind Chebyshev wavelet. The operational matrix of fractional
integration is utilized to reduce the fractional differential equations to a system of
algebraic equations. In addition, illustrative examples are presented to demonstrate
the efficiency and accuracy of the proposed method.

Keywords: Fractional calculus, the second kind Chebyshev wavelet, operational
matrix, fractional differential equations, Block Pulse Function.

1 Introduction

During the past decades, the field of fractional differential equations has attracted
the interest of researchers in several areas including physics, chemistry, engineer-
ing and even finance and social sciences [Garrappa and Popolizio (2011); Pod-
lubny(1999)] and there has been significant in developing numerical schemes for
their solution. These methods include Laplace transforms[Podlubny(1999)], Fourier
transforms[Gaul, Klein and Kemple(1991)], eigenvector expansion [Suarez and
Shokooh(1997)], Adomian decomposition method [Momani(2007); Jafari and Seifi
(2009)], Variational Iteration Method [Sweilam, Khader and Al-Bar(2007); Das
(2009)], Fractional Differential Transform Method [Arikoglu and Ozkol (2009); Er-
turk, Momani and Odibat (2008)], Fractional Difference Method [Meerschaert and
Tadjeran (2006)]and Power Series Method[Odibat and Shawagfeh (2007)]. But,
few papers reported application of wavelet to solve the fractional order differential
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equations[Wu (2009); Lepik (2009); Wei, Chen, Li, and Yi (2012); Zhou, Wang,
Wang and Liu (2011)].

In view of successful application of wavelet operational matrix in system anal-
ysis[Chen and Hsiao(1997); Bujurke, Salimath and Shiralashetti(2008)], system
identification[Karimi, Lohmann, Maralani and Moshiri (2004); Pawlak and Hasiew-
icz (1998)], optimal control[Hsiao and Wang (1999); Karimi, Moshiri, Lohmann
and Maralani (2005); Sadek, Abualrub and Abukhaled (2007)] and numerical so-
lution of integral and differential equations[Bujurke, Shiralashetti and Salimath
(2009); Babolian and Masouri (2009); Kajani and Vencheh(2008); Reihani and
Abadi (2007); Khellat and Yousefi (2006); Razzaghi and Yousefi (2001)], together
with the characteristic of wavelet functions, we hold that they should be applicable
to solve the fractional order systems. Although traditional computational methods
such as finite element and boundary element[Dong and Atluri (2011); Yao (2009)]
are widely applied to numerical solutions of differential equations, they are not
suitable for fractional differential equations with variable coefficients.

My purpose is to introduce the second kind Chebyshev wavelet method to solve a
class of multi-order arbitrary differential equations with variable coefficients. First,
we construct the second kind Chebyshev wavelet and derive the operational ma-
trix of fractional integration; Then the underlying fractional differential equation
is converted into a fractional integral equation via fractional integration; subse-
quently, the various signals involved in the fractional integral equation are approx-
imated by representing them as linear combinations of the wavelet functions and
truncating them at optimal levels; Fnally, the integral equation is converted to an
algebraic equation by introducing the wavelet operational matrix of the fractional
integration. In this paper, by using the second kind Chebyshev wavelet, we solve
numerically the following multi-order fractional differential equations (FDEs) with
variable coefficients(called the problem 1)

r—1
DLu(t)+ ¥ y(6)DPu(t) + 1. (0)u(r) = g(t),1 € [0,1) (1)
i=1

W0)=d;, i=0,1,---,n—1 Q)

where 0 < B < B < -+ < B,_1 <v, n—1 < v < n are constants. Moreover,
D} denotes the Caputo fractional derivative of order v and the values of d;(i =
0,1,---,n— 1) describe the initial state of u(¢) and g(¢) is a given source function.
The existence and uniqueness of solutions of FDEs have been studied by [Deng
and Ma (2010)].

The paper is organized as follows. In Section2, we introduce some necessary defi-
nitions and mathematical preliminaries of fractional calculus. In Section3, after de-
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scribing the basic formulation of wavelets and the second kind Chebyshev wavelet,
we derive convergence of the second kind Chebyshev wavelet and the second kind
Chebyshev wavelet operational matrix of the fractional differential equation. In
Section4, the proposed method is applied to some examples. Also a conclusion is
given in Section5.

2 Definitions and notations
We give some necessary definitions and mathematical preliminaries of the frac-
tional calculus theory which are used further in this paper.

Definition1.The Riemann-Liouville fractional integral operator /*of ordera o > 0
on usual Lebesgue space L [a, D] is given by

1 t
IOC — / _ a—1 t
10 = gy [, 1= @z >a @
I°f(6)=f(1) @)
and its fractional derivative of orderc > 0 is normally used:
d}’l
DOf(r) = S (Uf(), n—1<asn, )

Where nis an integer. For Riemann-Liouvilles definition, one has

I'(v+1)
I(XtV — 7toc+v 6
Fa+v+1) ©

The Riemann-Liouville derivation have certain disadvantages when trying to model
real-world phenomena with fractional differential equations. Therefore, we shall
introduce now a modified fractional differential operator D% proposed by Caputo.

Definition2. The Caputo definition of fractional differential operator is given by
1 t
DOC 1) = 7/ t— n—a—1 (n) d 71 a< 7
) = gy [, (- P @dTa 1 <as<n @

Where 7 is an integer.

It has the following two basic properties forn — 1 < o < nand f € L[a,b]

DII%f(t) = f(t) ®)
and

ool n—1 tk
*pef(t) = f(t)— Y f® (a*)a,t >a )

k=0
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63 3 Convergence of the second kind Chebyshev wavelet and the second kind
64 Chebyshev wavelet operational matrix of the fractional integration

es In this section, we use the second kind Chebyshev polynomial to construct the
66 second kind Chebyshev wavelet and give some properties of this wavelet.

67 3.1 The second kind Chebyshev wavelet

Wavelets are a family of functions constructed from dilation and translation of a
single function y(t) called the mother wavelet. When the dilation parameter a
and the translation parameter b vary continuously, we have the following family of
continuous wavelets as [Kajani and Vencheh (2008)]

_1 t—=b

Yar(t) = la| > y(—=), a,b ER.a#0 (10)
If we restrict the parametersaandbto discrete values as a = ao_k , b=nboa, k. ag> 0,
by > 0, where n and k are positive integers, the family of discrete wavelets are
defined as

k
Vi () = |ao|2 w(akt —nby), (11)

es Where Y, from a wavelet basis for L? (R). In particular, when ap = 2 and by = 1,
69 Wy, forms an orthogonal basis.

The second Chebyshev wavelet ¥, (1) = y(k,n,m,t) involve four arguments, n =
1,2,---,2% 1 kis assumed any positive integer, m is the degree of the second kind
Chebyshev polynomials and tis the normalized time. They are defined on the inter-
val [0,1)

koo ok a
Yn() = 4 2 On(231=2n41), I <r< s -
0, otherwise,
Where
~ 2
Un(t) =/ zUn(t) (13)

andm=0,1,--- ;M —1. Here Uy(t) are the second kind Chebyshev polynomials of
degree m which respect to the weight function @(¢) = v/1 —¢? on interval [—1,1]
and satisfy the following recursive formula

Up(t) = 1,U,(t) =2t,Up11(t) = 2tUp(t) = Upp—1 (£),m=1,2,-- - . (14)
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A function f(z) defined on the interval [0, 1) may be expanded as

f(t) = Z Cnmlljnm(t)p (15)
n=1m=0

Where

Cnm = (f (1), Wam (2 / @ () W (2) f (¢ )dt

If the infinite series in Eq.(15) is truncated, then Eq.(15) can be written as

2k pp—
r)zz 2 ComWum (1) = CT(1) (16)

where T indicates transposition, C and W(¢) are 2¥~!M x 1 matrices given by
T
C = [c10,C11,- yCL(M—1),€20," ", C2(M—1)> """ s Cok=105 " " aczk*I(M—l)]

W(t) = (w10, Vi1, Win—1), Y20, Yam—1),* » Yok 10,7+ zk—l(Mfl)]T (17)
Taking the collocation points as following:

2i—1

_ - k—1
ti_W)l_lvza”'vz M7 (18)

We define the second Chebyshev wavelet matrix @,y as

cbm’xm/ = [‘P(l‘]),‘{’(lz),- . . ,‘P(l‘ml)] (19)

where m' = 2¢-1M.
For example, when M = 3 and k = 2 the second Chebyshev wavelet matrix is ex-
pressed as

[ 1.5958 1.5958 1.5958 0O 0 0
—-2.1277 O 21277 0 0 0
P 1.2412 —1.5958 1.2412 O 0 0
6671 ¢ 0 0 1.5958  1.5958 1.5958
0 0 0 —-2.1277 O 2.1277
L O 0 0 1.2412 —1.5958 1.2412 |
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3.2 Convergence of the second kind Chebyshev wavelet bases

Theorem 3.1 Let A function f(¢) defined on the interval [0, 1) may be expanded as

o 2 y—1
f([) = Z Cnmllfnm(t)7 f(t) = Z Z Cnm‘l/nm<t)a
n=1m=0 n=1 m=0

o = (F0), ¥ () = | ' n 1) Yo (1) £ (1)

Proof. Since

Theorem 3.2 Let A function f(t) be L*[0, 1], and

Ry = f(t) = f(t)

Then Kl,%l/lrgw |Rkml|| =0

Where £(t), f(t) be defined as above and K = 241,
Proof. Rkl = fy (f(t) = F(1)*dt =" ¥ T ch,

n=2k"141m=M
k l
by Theorem 5.1, Z Z ez, < fo f2(t)dt Ts true for arbitrary natural numbers K,

n=1 m=0

M, and fo f2(t)dt is a limited value, so ¥ Y c2, is limited, thatis, ¥ ¥ c2, is
n=1m=0 n=1m=0
convergent.

Then, it exists N,J, when K > N.M >J, Y Y. c2,, may be arbitrary small.
n=2N-111m=J

So lim Rkl =0
o Mm_[IRu]
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3.3 Operational matrix of the fractional integration

The integration of the vector W(¢) defined in Eq.(17) can be obtained as

/ (e ~ PR(1) 20)
0

where P is the 2~! M x 2~ M operational matrix for integration [Kajani and Vencheh
(2008)].

Our purpose is to derive the second kind Chebyshev wavelet operational matrix of
the fractional integration. For this purpose, we rewrite Riemann—Liouville frac-
tional integration, as following

1

£0) = Fgs [, (=0 e

1

o—1
F((X)t xf(t), t>0, 20

Now, if f(¢) is expanded in the second Chebyshev wavelets, as showed in Eq.(15),
the Riemann-Liouville fractional integration becomes

1%f(t) = F(la)tal * f(t) ~ CTF(IOC) {1* ' P(r)} (22)

Thus if *~! % f(¢) can be integrated, then expanded in the second Chebyshev
wavelets, the Riemann—Liouville fractional integration is solved via the Chebyshev
wavelets.

Also, we define a m’-set of Block Pulse function(BPF) as

{1 i << (i),
bl(t)_{ 0, otherwisw, (23)

where i =0,1,2,--- ,m' — 1.

The functions b;() are disjoint and orthogonal. That is

b,-(t)b,(z)z{ g’;(”’ ii;ll.7 (24)
! [ 1, i=1,
/0 bi(t)b;(t)—{ g (25)

From the orthogonal property of BPF, it is possible to expand functions into their
Block Pulse series, this means that for every f(¢) € [0, 1) we can write

m—1
f6)= Y fibi(t) = fTBu () (26)
i=0
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where

ST =1fo fi o fw—a ] BL(6) = [bo(t), b1 (1), .. b1 (1)),
such that f; fori =0,1,2,--- ,m’ — 1 are obtained by f; = m’ fol f(t)bi(t)ds.

Similarly, the second Chebyshev wavelet may be expanded into an m/-term block
pulse functions (BPF) as

W (t) = Dy sy B (l), (27)

We derive the Block Pulse operational matrix of the fractional integration F* as
following

I°B,y(t) = F*B,y (1), (28)
where
(1 & & & - S |
0 1 51 52 T émfZ
0 0 1 cee G
S — e (29)
29meT(e+1) [ 200 1 e
00 0 0 - &
00 0 0 0 1 |

with & = 2k+1)*— 2k— 1)* k=1,2,--- .m' — 1.
Next, we derive the Chebyshev wavelet operational matrix of the fractional integra-
tion. Let

Ia‘Pm/ (t) =~ PZ/Xm/le/ (t) (30)

where matrix P%,_ , is called the second Chebyshev wavelet operational matrix of

the fractional integration.
Using Egs. (27) and (28), we have

Ia\Pm’ (t) ~ Iaq)m’xm’Bm’ (t) = cbm’xm’IaBm’ (t) ~ q)m’xm/FaBm’ (t) (31

From Egs. (30) and (31) we get

PZ/Xm/le/ (l) = Py;‘:/Xm’q)m’xm’Bm/(t) = q),n/xm/FaBm/ ([) 32)
Then, the second Chebyshev wavelet operational matrix of the fractional integra-
tion P%_, is given by

P2y =P FO@, | (33)
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In particular, for M = 3, k =2 and o = 0.5 the second Chebyshev wavelet opera-

tional matrix of the fractional integration P%,  , is given by
[ 0.1513  —0.2077 —0.1558 —3.7364 —1.5403 —0.0746 7
0.2077  0.5841  0.2077  1.8244  0.1826  0.0033
pOs _ —-0.1212 —-0.1615 0.1860  —0.7450 —0.2871 —0.0096
63671 0 0 0 0.1513  —0.2077 —0.1558
0 0 0 0.2077  0.5841  0.2077
| 0 0 0 —0.1212 —-0.1615 0.1860

It should be noted that the operational matrix P9, contains many zero entries.

This phenomena makes calulations fast. The calculation for the matrix P%, . is

carried out once and is used to solve fractional order as well as integer order differ-
ential equations.

4 Solution of the problem 1

By approximating the function D}u(t), we have
Dlu(r) = CT¥(r), (34)

together with the initial states, we get

DPu@) =P P w(),i=1,2,-- v—1 (35)
- n—1 . l‘k
u(t) =CTP, (1) + I;)M )<0)E' (36)
Substituting Eq.(34) ,Eq.(35) and Eq.(36)into Eq.(1),we have
- r—1 S - n—1 - lk
CT¥ (1) + ; W(O)C By ¥ (@) + 1) (CT By (2) +k§)u( )(O)H) =g(1)
(37)

Coefficients ¥;(¢)(i = 1,2,---,r) can be dispersed into 7%(#;) and g(t) may be dis-
[=1,2

/

persed into g(#)(I = 1,2,--- ,m
Let
’}’i(ﬁ) 0 0
0 () -+ 0
Ri: . Y( ) . 4 ,(i:1,2,"',}’), (38)
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N0 N 0B SOOI
g:[g(tl)fyr(tl)zu (O)E g(t2) — (1) Z” (O)E o 8ltw) = Vr(twr) Z” (O)F]
=0 ! k=0 : k=0 '

Therefore, Eq.(37) can be written as

.
CT (@ + Y PP @R = 47 (39)
i=1

m' xm

w0 where @,y = [¥(11), ¥(12), -+, P(tw)]- Eq.(39) is a linear system of algebraic
101 equations.

102 5 Numerical examples
103 In this section, three examples are considered aiming to illustrate how one can
104 apply the proposed algorithm presented in the previous section.

Example 1. Consider the equation, see [Deng and Ma (2010)]

aD>u(t) +b(t)D"u(t) 4 c(t)Du(t) 4 e(t) D" u(t) + k(t)u(t) = f(t),

(40)
O<vi<l,l<vm<?2

s where f(1) = —a— F5aS12 7" — ()t — 5ayt> " k() (2~ 317), and u(0) = 2,
106 M/(O) — 0

107 The analytic solution of this problem is u(t) =2 — %tz. The maximum absolute
1s error achieved in [Deng and Ma (2010)], with 1000 steps, is 4.39 x 1072, while the
100 maximum absolute error using the second Chebyshev wavelet method isOand the
110 comparison between the second Chebyshev wavelet method and the exact solution
11 is presented in Fig.1-Fig.4 for M = 3 and different values of k.

Example 2. Consider the equation
1

D?u(t) +sin(t)DZu(t) + tu(t) = f(t),u(0) = u'(0) =0

and

32768 15 2048 13
2 — 12 )
6435 429

f(t) =1° =% +561% — 426 +sin(r)(

112 One can easily check that u(t) = 8 — ¢ is the unique analytical solution.

113 In Table 1, we list the absolute errors for M = 3 and different values of k and Ref [
1us Li and Zhao (2010)]. From Tables 1, we can achieve a better approximation with
15 the exact solution by making use of second Chebyshev wavelets method then Ref.[
16 Li and Zhao (2010)]. We may also see that the error is smaller and smaller when
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0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 09 1

Figure 1: Comparison of Num. sol. and Exa. Sol. of k=3,M =3

Tl " ' S Our result

Exact solution

L L L L L L n L L
0.1 0.2 03 04 05 0.6 0.7 0.8 09 1

e - Our result
1.95 \‘\4\,\%\* Exact solution
\k
19 .
K
185 %

1.65 X
kN
1.6 X 1
1.55 \ 1
15 . . . . . . . . .
o 01 02 03 04 05 06 07 08 09 1

Figure 3: Comparison of Num. sol. and Exa. Sol. of k =5,M =3
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2 ””“‘M 5 Our result
1.95 M’kw Exact solution
1.9 NN’\V%&

Figure 4: Comparison of Num. sol. and Exa. Sol. of k=6,M =3

k increases. Therefore for better results, using a larger k is recommended. The
computational results show that the method in this article can be effectively used
in numerical calculus for fractional differential equation with variable coefficient,
and the method is also feasibility to the realistic fractional differential equation.

Table 1: The absolute errors forM = 3and different values ofk

k=3M=3 k=4,M=3 k=5M=3

ours Ref. [Li and | ours Ref. [Li and | ours Ref. [Li and
Zhao(2010)] Zhao2010] Zhao2010]
0.0625 | 6.8166e-008 | 9.2040e-008 5.5745e-010 | 7.4471e-010 4.4517e-012 | 5.9848e-012
0.1875 | 6.2025e-006 | 1.2422e-005 6.4280e-007 | 8.3627e-007 8.3173e-008 | 5.9025e-007
0.3125 | 5.7883e-005 | 4.6183e-007 8.1457¢-006 | 3.9354e-007 1.5545e-006 | 1.8749¢-007
0.4375 | 1.9796e-004 | 8.8140e-004 3.8396e-005 | 8.1461e-004 9.6917e-006 | 8.0265e-004
0.5625 | 4.1838e-004 | 5.7552e-003 1.1637¢-004 | 5.1642e-003 4.4897e-005 | 4.5698¢-003
0.6875 | 5.2079¢-004 | 2.0001e-002 2.9048e-004 | 1.7360e-002 1.8488e-004 | 1.5707e-002
0.8125 | 1.1363e-004 | 4.5151e-002 6.4027e-004 | 3.8760e-002 5.2730e-004 | 3.6057e-002
0.9375 | 3.1379e-003 | 5.9717e-002 1.0678e-003 | 5.0103e-002 8.3468e-004 | 4.9362e-002

Example 3. Consider this equation
D%u(t) 4 (&' +1)u(t) = e +te' —1t

such that u(0) = 0. The exact solution of this equation for & = 1 is given by
u(t) =€ — 1. We applied the second Chebyshev wavelet approach to solve this
problem with k =5, M = 3 for various values of «. It is evident from the Fig.
5 that, as o close to 1, the numerical solution by the second Chebyshev wavelet,
converge to the exact solution, i.e. the solution of fractional differential equation
approaches to the solution of integer order differential equation.



127

128

129

130

131

132

134

135

136

137

138

140

141

142

143

144

145

CMES Galley Proof Only Please Return in 48 Hours.

The Second Kind Chebyshev Wavelet Method 13

25

©- Ours g.=1
Ours 0.=0.5

+ Ours ¢.=0.75
Exact solution ¢,=1

u(t)

Figure 5: Numerical and exact solution for o = 1of Example 3

6 Conclusion

In this paper, we described the second Chebyshev wavelet method for multi-term
FDEs with variable coefficients. We derive the SCW operational matrix of frac-
tional order integration and use the wavelet basis together with operational matrix
to reduce the factional differential equation to a system of algebraic equations. The
matrix elements of the discrete operators are provided explicitly, and this in turn
greatly simplifies the steps for obtaining solutions. Three examples are given to
demonstrate that the method is effective and accurate for solving multi-term FDEs
with variable coefficients.
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