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Abstract: In this article, the second kind Chebyshev wavelet method is pre-6

sented for solving a class of multi-order fractional differential equations (FDEs)7

with variable coefficients. We first construct the second kind Chebyshev wavelet,8

prove its convergence and then derive the operational matrix of fractional integra-9

tion of the second kind Chebyshev wavelet. The operational matrix of fractional10

integration is utilized to reduce the fractional differential equations to a system of11

algebraic equations. In addition, illustrative examples are presented to demonstrate12

the efficiency and accuracy of the proposed method.13
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1 Introduction16

During the past decades, the field of fractional differential equations has attracted17

the interest of researchers in several areas including physics, chemistry, engineer-18

ing and even finance and social sciences [Garrappa and Popolizio (2011); Pod-19

lubny(1999)] and there has been significant in developing numerical schemes for20

their solution. These methods include Laplace transforms[Podlubny(1999)], Fourier21

transforms[Gaul, Klein and Kemple(1991)], eigenvector expansion [Suarez and22

Shokooh(1997)], Adomian decomposition method [Momani(2007); Jafari and Seifi23

(2009)], Variational Iteration Method [Sweilam, Khader and Al-Bar(2007); Das24

(2009)], Fractional Differential Transform Method [Arikoglu and Ozkol (2009); Er-25

turk, Momani and Odibat (2008)], Fractional Difference Method [Meerschaert and26

Tadjeran (2006)]and Power Series Method[Odibat and Shawagfeh (2007)]. But,27

few papers reported application of wavelet to solve the fractional order differential28
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equations[Wu (2009); Lepik (2009); Wei, Chen, Li, and Yi (2012); Zhou, Wang,29

Wang and Liu (2011)].30

In view of successful application of wavelet operational matrix in system anal-31

ysis[Chen and Hsiao(1997); Bujurke, Salimath and Shiralashetti(2008)], system32

identification[Karimi, Lohmann, Maralani and Moshiri (2004); Pawlak and Hasiew-33

icz (1998)], optimal control[Hsiao and Wang (1999); Karimi, Moshiri, Lohmann34

and Maralani (2005); Sadek, Abualrub and Abukhaled (2007)] and numerical so-35

lution of integral and differential equations[Bujurke, Shiralashetti and Salimath36

(2009); Babolian and Masouri (2009); Kajani and Vencheh(2008); Reihani and37

Abadi (2007); Khellat and Yousefi (2006); Razzaghi and Yousefi (2001)], together38

with the characteristic of wavelet functions, we hold that they should be applicable39

to solve the fractional order systems. Although traditional computational methods40

such as finite element and boundary element[Dong and Atluri (2011); Yao (2009)]41

are widely applied to numerical solutions of differential equations, they are not42

suitable for fractional differential equations with variable coefficients.43

My purpose is to introduce the second kind Chebyshev wavelet method to solve a
class of multi-order arbitrary differential equations with variable coefficients. First,
we construct the second kind Chebyshev wavelet and derive the operational ma-
trix of fractional integration; Then the underlying fractional differential equation
is converted into a fractional integral equation via fractional integration; subse-
quently, the various signals involved in the fractional integral equation are approx-
imated by representing them as linear combinations of the wavelet functions and
truncating them at optimal levels; Fnally, the integral equation is converted to an
algebraic equation by introducing the wavelet operational matrix of the fractional
integration. In this paper, by using the second kind Chebyshev wavelet, we solve
numerically the following multi-order fractional differential equations (FDEs) with
variable coefficients(called the problem 1)

Dv
∗u(t)+

r−1

∑
i=1

γi(t)D
βi
∗ u(t)+ γr(t)u(t) = g(t), t ∈ [0,1) (1)

u(i)(0) = di, i = 0,1, · · · ,n−1 (2)

where 0 < β1 < β2 < · · · < βr−1 < v, n− 1 < v ≤ n are constants. Moreover,44

Dv
∗ denotes the Caputo fractional derivative of order v and the values of di(i =45

0,1, · · · ,n−1) describe the initial state of u(t) and g(t) is a given source function.46

The existence and uniqueness of solutions of FDEs have been studied by [Deng47

and Ma (2010)].48

The paper is organized as follows. In Section2, we introduce some necessary defi-49

nitions and mathematical preliminaries of fractional calculus. In Section3, after de-50
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scribing the basic formulation of wavelets and the second kind Chebyshev wavelet,51

we derive convergence of the second kind Chebyshev wavelet and the second kind52

Chebyshev wavelet operational matrix of the fractional differential equation. In53

Section4, the proposed method is applied to some examples. Also a conclusion is54

given in Section5.55

2 Definitions and notations56

We give some necessary definitions and mathematical preliminaries of the frac-57

tional calculus theory which are used further in this paper.58

Definition1.The Riemann–Liouville fractional integral operator Iαof ordera α > 0
on usual Lebesgue space L1[a,b] is given by

Iα f (t) =
1

Γ(α)

∫ t

a
(t− τ)α−1 f (τ)dτ, t > a, (3)

I0 f (t) = f (t) (4)

and its fractional derivative of orderα > 0 is normally used:

Dα f (t) =
dn

dtn (I
n−α f (t)), n−1 < α ≤ n, (5)

Where nis an integer. For Riemann–Liouvilles definition, one has

Iαtν =
Γ(ν +1)

Γ(α +ν +1)
tα+ν (6)

The Riemann–Liouville derivation have certain disadvantages when trying to model59

real-world phenomena with fractional differential equations. Therefore, we shall60

introduce now a modified fractional differential operator Dα
∗ proposed by Caputo.61

Definition2. The Caputo definition of fractional differential operator is given by

Dα
∗ f (t) =

1
Γ(n−α)

∫ t

a
(t− τ)n−α−1 f (n)(τ)dτ,n−1 < α ≤ n, (7)

Where n is an integer.62

It has the following two basic properties for n−1 < α ≤ n and f ∈ L1[a,b]

Dα
∗ Iα f (t) = f (t) (8)

and

IαDα
∗ f (t) = f (t)−

n−1

∑
k=0

f (k)(a+)
tk

k!
, t > a (9)
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3 Convergence of the second kind Chebyshev wavelet and the second kind63

Chebyshev wavelet operational matrix of the fractional integration64

In this section, we use the second kind Chebyshev polynomial to construct the65

second kind Chebyshev wavelet and give some properties of this wavelet.66

3.1 The second kind Chebyshev wavelet67

Wavelets are a family of functions constructed from dilation and translation of a
single function ψ(t) called the mother wavelet. When the dilation parameter a
and the translation parameter b vary continuously, we have the following family of
continuous wavelets as [Kajani and Vencheh (2008)]

ψab(t) = |a|−
1
2 ψ(

t−b
a

), a,b ∈ R,a 6= 0 (10)

If we restrict the parametersaandbto discrete values as a= a−k
0
, b= nb0a−k

0 , a0 > 0,
b0 > 0, where n and k are positive integers, the family of discrete wavelets are
defined as

ψkn(t) = |a0|
k
2 ψ(ak

0t−nb0), (11)

Where ψkn from a wavelet basis for L2(R). In particular, when a0 = 2 and b0 = 1,68

ψkn forms an orthogonal basis.69

The second Chebyshev wavelet ψnm(t) = ψ(k,n,m, t) involve four arguments, n =
1,2, · · · ,2k−1,k is assumed any positive integer, m is the degree of the second kind
Chebyshev polynomials and tis the normalized time. They are defined on the inter-
val [0,1)

ψnm(t) =

{
2

k
2 Ũm(2

k
2 t−2n+1), n−1

2k−1 ≤ t < n
2k−1

0, otherwise,
(12)

Where

Ũm(t) =

√
2
π

Um(t) (13)

and m = 0,1, · · · ,M−1. Here Um(t) are the second kind Chebyshev polynomials of
degree m which respect to the weight function ω(t) =

√
1− t2 on interval [−1,1]

and satisfy the following recursive formula

U0(t) = 1,U1(t) = 2t,Um+1(t) = 2tUm(t)−Um−1(t),m = 1,2, · · · . (14)
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A function f (t) defined on the interval [0,1) may be expanded as

f (t) =
∞

∑
n=1

∞

∑
m=0

cnmψnm(t), (15)

Where

cnm = ( f (t),ψnm(t))ωn =
∫ 1

0
ωn(t)ψnm(t) f (t)dt

If the infinite series in Eq.(15) is truncated, then Eq.(15) can be written as

f (t)≈
2k−1

∑
n=1

M−1

∑
m=0

cnmψnm(t) =CT
Ψ(t) (16)

where T indicates transposition, C and Ψ(t) are 2k−1M×1 matrices given by

C = [c10,c11, · · · ,c1(M−1),c20, · · · ,c2(M−1), · · · ,c2k−10, · · · ,c2k−1(M−1)]
T

Ψ(t) = [ψ10,ψ11, · · · ,ψ1(M−1),ψ20, · · · ,ψ2(M−1), · · · ,ψ2k−10, · · · ,ψ2k−1(M−1)]
T (17)

Taking the collocation points as following:

ti =
2i−1
2kM

, i = 1,2, · · · ,2k−1M, (18)

We define the second Chebyshev wavelet matrix Φm′×m′ as

Φm′×m′ = [Ψ(t1),Ψ(t2), · · · ,Ψ(tm′)] (19)

where m′ = 2k−1M.70

For example, when M = 3 and k = 2 the second Chebyshev wavelet matrix is ex-
pressed as

Φ6×6 =



1.5958 1.5958 1.5958 0 0 0
−2.1277 0 2.1277 0 0 0
1.2412 −1.5958 1.2412 0 0 0
0 0 0 1.5958 1.5958 1.5958
0 0 0 −2.1277 0 2.1277
0 0 0 1.2412 −1.5958 1.2412


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3.2 Convergence of the second kind Chebyshev wavelet bases71

Theorem 3.1 Let A function f (t) defined on the interval [0,1) may be expanded as

f (t) =
∞

∑
n=1

∞

∑
m=0

cnmψnm(t), f̃ (t) =
2k−1

∑
n=1

M−1

∑
m=0

cnmψnm(t),

Then
2k−1

∑
n=1

M−1
∑

m=0
c2

nm ≤
∫ 1

0 f 2(t)dt72

Where

cnm = ( f (t),ψnm(t))ωn =
∫ 1

0
ωn(t)ψnm(t) f (t)dt.

Proof. Since

0≤
∫ 1

0
( f (t)− f̃ (t))2dt =

∫ 1

0
f 2(t)dt +

∫ 1

0
f̃ 2(t)dt−2

∫ 1

0
f (t) f̃ (t)dt

=
∫ 1

0
f 2(t)dt−

2k−1

∑
n=1

M−1

∑
m=0

c2
nm

Hence,
2k−1

∑
n=1

M−1
∑

m=0
c2

nm ≤
∫ 1

0 f 2(t)dt73

Theorem 3.2 Let A function f (t) be L2[0,1], and

RK,M = f (t)− f̃ (t)

Then lim
K,M→∞

‖RK,M‖= 0.74

Where f (t), f̃ (t) be defined as above and K = 2k−1.75

Proof. ‖RK,M‖2 =
∫ 1

0 ( f (t)− f̃ (t))2dt =
∞

∑
n=2k−1+1

∞

∑
m=M

c2
nm76

by Theorem 5.1,
2k−1

∑
n=1

M−1
∑

m=0
c2

nm ≤
∫ 1

0 f 2(t)dt Is true for arbitrary natural numbers K,77

M, and
∫ 1

0 f 2(t)dt is a limited value, so
∞

∑
n=1

∞

∑
m=0

c2
nm is limited, that is,

∞

∑
n=1

∞

∑
m=0

c2
nm is78

convergent.79

Then, it exists N,J, when K > N,M > J,
∞

∑
n=2N−1+1

∞

∑
m=J

c2
nm may be arbitrary small.80

So lim
K,M→∞

‖RK,M‖= 081
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3.3 Operational matrix of the fractional integration82

The integration of the vector Ψ(t) defined in Eq.(17) can be obtained as∫ 1

0
Ψ(t)dt ≈ PΨ(t) (20)

where P is the 2k−1M×2k−1M operational matrix for integration [Kajani and Vencheh83

(2008)].84

Our purpose is to derive the second kind Chebyshev wavelet operational matrix of
the fractional integration. For this purpose, we rewrite Riemann–Liouville frac-
tional integration, as following

Iα f (t) =
1

Γ(α)

∫ t

0
(t− τ)α−1 f (τ)dτ =

1
Γ(α)

tα−1 ∗ f (t), t > 0, (21)

Now, if f (t) is expanded in the second Chebyshev wavelets, as showed in Eq.(15),
the Riemann–Liouville fractional integration becomes

Iα f (t) =
1

Γ(α)
tα−1 ∗ f (t)≈CT 1

Γ(α)

{
tα−1 ∗Ψ(t)

}
(22)

Thus if tα−1 ∗ f (t) can be integrated, then expanded in the second Chebyshev85

wavelets, the Riemann–Liouville fractional integration is solved via the Chebyshev86

wavelets.87

Also, we define a m′-set of Block Pulse function(BPF) as

bi(t) =
{

1, i/m′ ≤ t < (i+1)/m′,
0, otherwisw,

(23)

where i = 0,1,2, · · · ,m′−1.88

The functions bi(t) are disjoint and orthogonal. That is

bi(t)bl(t) =
{

bi(t), i = l,
0, i 6= l.

(24)

∫ 1

0
bi(t)bl(t) =

{
1/m′, i = l,
0, i 6= l.

(25)

From the orthogonal property of BPF, it is possible to expand functions into their
Block Pulse series, this means that for every f (t) ∈ [0,1) we can write

f (t)≈
m−1

∑
i=0

fibi(t) = f T Bm′(t) (26)
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where

f T = [ f0, f1, · · · , fm′−1],BT
m(t) = [b0(t),b1(t), . . . ,bm′−1(t)],

such that fi for i = 0,1,2, · · · ,m′−1 are obtained by fi = m′
∫ 1

0 f (t)bi(t)dt.89

Similarly, the second Chebyshev wavelet may be expanded into an m′-term block
pulse functions (BPF) as

Ψm′(t) = Φm′×m′Bm′(t), (27)

We derive the Block Pulse operational matrix of the fractional integration Fα as
following

IαBm′(t) = FαBm′(t), (28)

where

Fα =
1

2αm′αΓ(α +1)



1 ξ1 ξ2 ξ3 · · · ξm−1
0 1 ξ1 ξ2 · · · ξm−2
0 0 1 ξ1 · · · ξm−3
...

...
...

...
. . .

...
0 0 0 0 · · · ξ1
0 0 0 0 0 1


(29)

with ξk = (2k+1)α − (2k−1)α , k = 1,2, · · · ,m′−1.90

Next, we derive the Chebyshev wavelet operational matrix of the fractional integra-
tion. Let

Iα
Ψm′(t)≈ Pα

m′×m′Ψm′(t) (30)

where matrix Pα

m′×m′ is called the second Chebyshev wavelet operational matrix of91

the fractional integration.92

Using Eqs. (27) and (28), we have

Iα
Ψm′(t)≈ Iα

Φm′×m′Bm′(t) = Φm′×m′IαBm′(t)≈Φm′×m′FαBm′(t) (31)

From Eqs. (30) and (31) we get

Pα

m′×m′Ψm′(t) = Pα

m′×m′Φm′×m′Bm′(t) = Φm′×m′FαBm′(t) (32)

Then, the second Chebyshev wavelet operational matrix of the fractional integra-
tion Pα

m′×m′ is given by

Pα

m′×m′ = Φm′×m′Fα
Φ
−1
m′×m′ (33)
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In particular, for M = 3, k = 2 and α = 0.5 the second Chebyshev wavelet opera-
tional matrix of the fractional integration Pα

m′×m′ is given by

P0.5
6×6 =



0.1513 −0.2077 −0.1558 −3.7364 −1.5403 −0.0746
0.2077 0.5841 0.2077 1.8244 0.1826 0.0033
−0.1212 −0.1615 0.1860 −0.7450 −0.2871 −0.0096
0 0 0 0.1513 −0.2077 −0.1558
0 0 0 0.2077 0.5841 0.2077
0 0 0 −0.1212 −0.1615 0.1860


It should be noted that the operational matrix Pα

m′×m′ contains many zero entries.93

This phenomena makes calulations fast. The calculation for the matrix Pα

m′×m′ is94

carried out once and is used to solve fractional order as well as integer order differ-95

ential equations.96

4 Solution of the problem 197

By approximating the function Dv
∗u(t), we have

Dv
∗u(t)∼=CT

Ψ(t), (34)

together with the initial states, we get

Dβi
∗ u(t)∼=CT Pv−βi

m′×m′Ψ(t), i = 1,2, · · · ,v−1 (35)

u(t)∼=CT Pv
m′×m′Ψ(t)+

n−1

∑
k=0

u(k)(0)
tk

k!
. (36)

Substituting Eq.(34) ,Eq.(35) and Eq.(36)into Eq.(1),we have

CT
Ψ(t)+

r−1

∑
i=1

γi(t)CT Pv−βi
m′×m′Ψ(t)+ γr(t)(CT Pv

m′×m′Ψ(t)+
n−1

∑
k=0

u(k)(0)
tk

k!
) = g(t)

(37)

Coefficients γi(t)(i = 1,2, · · · ,r) can be dispersed into γi(tl) and g(t) may be dis-98

persed into g(tl)(l = 1,2, · · · ,m′).99

Let

Ri =


γi(t1) 0 · · · 0
0 γi(t2) · · · 0
...

...
. . .

...
0 0 · · · γi(tm′)

 ,(i = 1,2, · · · ,r), (38)
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g = [g(t1)− γr(t1)
n−1

∑
k=0

u(k)(0)
tk
1

k!
g(t2)− γr(t2)

n−1

∑
k=0

u(k)(0)
tk
2

k!
· · ·g(tm′)− γr(tm′)

n−1

∑
k=0

u(k)(0)
tk
m′

k!
]T

Therefore, Eq.(37) can be written as

CT (Φm′×m′+
r

∑
i=1

Pv−βi
m′×m′Φm′×m′Ri) = gT (39)

where Φm′×m′ = [Ψ(t1), Ψ(t2), · · · ,Ψ(tm′)]. Eq.(39) is a linear system of algebraic100

equations.101

5 Numerical examples102

In this section, three examples are considered aiming to illustrate how one can103

apply the proposed algorithm presented in the previous section.104

Example 1. Consider the equation, see [Deng and Ma (2010)]

aD2
∗u(t)+b(t)Dv2

∗ u(t)+ c(t)Du(t)+ e(t)Dv1
∗ u(t)+ k(t)u(t) = f (t),

0 < v1 < 1,1 < v2 < 2
(40)

where f (t) =−a− b(t)
Γ(3−v2)

t2−v2−c(t)t− e(t)
Γ(3−v1)

t2−v1 +k(t)(2− 1
2 t2), and u(0) = 2,105

u′(0) = 0.106

The analytic solution of this problem is u(t) = 2− 1
2 t2. The maximum absolute107

error achieved in [Deng and Ma (2010)], with 1000 steps, is 4.39×10−5, while the108

maximum absolute error using the second Chebyshev wavelet method is0and the109

comparison between the second Chebyshev wavelet method and the exact solution110

is presented in Fig.1-Fig.4 for M = 3 and different values of k.111

Example 2. Consider the equation

D2u(t)+ sin(t)D
1
2∗ u(t)+ tu(t) = f (t),u(0) = u′(0) = 0

and

f (t) = t9− t8 +56t6−42t5 + sin(t)(
32768
6435

t
15
2 − 2048

429
t

13
2 )

One can easily check that u(t) = t8− t7 is the unique analytical solution.112

In Table 1, we list the absolute errors for M = 3 and different values of k and Ref.[113

Li and Zhao (2010)]. From Tables 1, we can achieve a better approximation with114

the exact solution by making use of second Chebyshev wavelets method then Ref.[115

Li and Zhao (2010)]. We may also see that the error is smaller and smaller when116
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Figure 1: Comparison of Num. sol. and Exa. Sol. of k = 3,M = 3

Figure 2: Comparison of Num. sol. and Exa. Sol. of k = 4,M = 3

Figure 3: Comparison of Num. sol. and Exa. Sol. of k = 5,M = 3
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Figure 4: Comparison of Num. sol. and Exa. Sol. of k = 6,M = 3

k increases. Therefore for better results, using a larger k is recommended. The117

computational results show that the method in this article can be effectively used118

in numerical calculus for fractional differential equation with variable coefficient,119

and the method is also feasibility to the realistic fractional differential equation.120

Table 1: The absolute errors forM = 3and different values ofk

t
k = 3,M = 3 k = 4,M = 3 k = 5,M = 3
ours Ref. [Li and

Zhao(2010)]
ours Ref. [Li and

Zhao2010]
ours Ref. [Li and

Zhao2010]
0.0625 6.8166e-008 9.2040e-008 5.5745e-010 7.4471e-010 4.4517e-012 5.9848e-012
0.1875 6.2025e-006 1.2422e-005 6.4280e-007 8.3627e-007 8.3173e-008 5.9025e-007
0.3125 5.7883e-005 4.6183e-007 8.1457e-006 3.9354e-007 1.5545e-006 1.8749e-007
0.4375 1.9796e-004 8.8140e-004 3.8396e-005 8.1461e-004 9.6917e-006 8.0265e-004
0.5625 4.1838e-004 5.7552e-003 1.1637e-004 5.1642e-003 4.4897e-005 4.5698e-003
0.6875 5.2079e-004 2.0001e-002 2.9048e-004 1.7360e-002 1.8488e-004 1.5707e-002
0.8125 1.1363e-004 4.5151e-002 6.4027e-004 3.8760e-002 5.2730e-004 3.6057e-002
0.9375 3.1379e-003 5.9717e-002 1.0678e-003 5.0103e-002 8.3468e-004 4.9362e-002

Example 3. Consider this equation

Dαu(t)+(et + t)u(t) = e2t + tet − t

such that u(0) = 0. The exact solution of this equation for α = 1 is given by121

u(t) = et − 1. We applied the second Chebyshev wavelet approach to solve this122

problem with k = 5, M = 3 for various values of α . It is evident from the Fig.123

5 that, as α close to 1, the numerical solution by the second Chebyshev wavelet,124

converge to the exact solution, i.e. the solution of fractional differential equation125

approaches to the solution of integer order differential equation.126
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Figure 5: Numerical and exact solution for α = 1of Example 3

6 Conclusion127

In this paper, we described the second Chebyshev wavelet method for multi-term128

FDEs with variable coefficients. We derive the SCW operational matrix of frac-129

tional order integration and use the wavelet basis together with operational matrix130

to reduce the factional differential equation to a system of algebraic equations. The131

matrix elements of the discrete operators are provided explicitly, and this in turn132

greatly simplifies the steps for obtaining solutions. Three examples are given to133

demonstrate that the method is effective and accurate for solving multi-term FDEs134

with variable coefficients.135
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